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Abstract

We present an algorithm for estimating dense image
correspondences. Our versatile approach lends it-
self to various tasks typical for video post-processing,
including image morphing, optical flow estimation,
stereo rectification, disparity/depth reconstruction, and
baseline adjustment. We incorporate recent advances
in feature matching, energy minimization, stereo vi-
sion, and data clustering into our approach. At the core
of our correspondence estimation we use Efficient Be-
lief Propagation for energy minimization.

While state-of-the-art algorithms only work on
thumbnail-sized images, our novel feature downsam-
pling scheme in combination with a simple, yet ef-
ficient data term compression, can cope with high-
resolution data. The incorporation of SIFT (Scale-
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Invariant Feature Transform) features into data term
computation further resolves matching ambiguities,
making long-range correspondence estimation possi-
ble. We detect occluded areas by evaluating the corre-
spondence symmetry, we further apply Geodesic mat-
ting to automatically determine plausible values in
these regions.
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1 Introduction

Establishing dense image correspondences between
images is still a challenging problem, especially when
the input images feature long-range motion and large
occluded areas. With the increasing availability of
high-resolution content, the requirements for corre-
spondence estimation between images are further in-
creased. High resolution images often exhibit many
ambiguous details in places where their low resolution
predecessors only show uniformly colored areas, thus
the need for smarter and more robust matching tech-
niques arises. Liu et al. [LYT+08] recently proposed a
dense matching approach for images possibly showing
different scene content. We present an approach for
establishing pixel correspondences between two high
resolution images and pick up on their idea to incorpo-
rate dense SIFT feature descriptors [Low99, Low04],
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Figure 1: Belief Propagation Optical Flow. Left to right: two 1920× 1080 input images A and B, optical flow
from A to B, flow symmetry, rendered in-between image. We specifically tailored our optical flow for image
morphing in the presence of large motion and occlusions. We incorporate recent advances in computer vision
to produce visually convincing results.

yet we use them for a different purpose. While they
identify visually similar regions in low-resolution im-
ages, we use them as a descriptor for fine detail in
high-resolution images. Our approach provides a ver-
satile tool for various tasks in video post-production.
Examples are image morphing, optical flow estima-
tion, stereo rectification, disparity/depth reconstruc-
tion, and stereoscopic baseline adjustment.

In order to match fine structural detail in two im-
ages, we compute a SIFT descriptor for each pixel
in the original high resolution images. To avoid am-
biguous descriptors and to speed up computation, we
downsample each image by selecting the most rep-
resentative SIFT descriptor for each n × n grid cell
(typically n = 4). An initial lower resolution cor-
respondence map is then computed on the resulting
downsampled versions of both images. The 131-
dimensional descriptor of each pixel is a combination
of the mean RGB color values (3-dimensional) and
the representative SIFT descriptor of this cell (128-
dimensional). The L1-norm of this vector describes
dissimilarity between two pixels and allows for much
clearer distinction between non-corresponding pixels
when compared to using just the pixel color as in many
previous approaches.

The optical flow between the two images is com-
puted via Efficient Belief Propagation. While the
original Belief Propagation implementation by Felzen-
szwalb et al. [FP06] might not retain crisp borders due
to the grid-based message passing scheme, we employ
a non-grid-like regularization technique as proposed
by Smith et al. [SZJ09] in the context of stereo match-
ing. As memory consumption of Belief Propagation
on this scale is still too high for long-range corre-
spondence estimation, we introduce a simple minima-
preserving data term compression. For each row and
column as well as each pixel of a downsampled ver-
sion of the data term window, we store the minimal
matching cost. Decompression is done by obtaining
the maxima of the respective minima of a pixel. Dur-

ing Belief Propagation, a symmetry term ensures con-
sistent results. Occluded regions are identified and in-
painted, i.e., plausible correspondence values are esti-
mated where no valid symmetric correspondences can
be found. Assuming that each occluded area is sur-
rounded by two independently moving regions, we
use Geodesic Matting [BS09] to propagate correspon-
dence information. The resulting image correspon-
dence map is upsampled to its original size and refined
locally.

The paper is structured as follows: After a brief sur-
vey of related work in Sect. 2, we present our corre-
spondence estimation algorithm in Sect. 3. Various
possible applications are presented in Sect. 4 and re-
sults are presented in Sect. 5. In our accompanying
video, we further give a qualitative demonstration of
our rendered results. Finally, we conclude in Sect. 6.

2 Related Work

Belief Propagation has been introduced to the com-
puter vision community by Felzenszwalb and Hutten-
locher [FP06]. Since then, it has received consider-
able attention: Several extensions have been proposed
to speed up the calculation, e.g., [LTWS11, GGC11].
It was used by Liu et al. [LYT+08] in combination
with SIFT features for dense correspondence estima-
tion between similar images. However, these corre-
spondences were only established for thumbnail-sized
images and did not suffice for the tasks our approach
can cope with (i.e., occlusion handling, symmetric cor-
respondences, high resolution data).

Optical flow algorithms are closely linked to our
approach. A recent survey of state-of-the-art algo-
rithms has been conducted by Baker et al. [BSL+07].
The key difference in concept is that optical flow
algorithms typically derive continuous flow vectors
instead of discrete pixel correspondences. Addi-
tionally, optical flow computation typically assumes
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color/brightness constancy between images. We qual-
itatively compare our method with a state-of-the-
art optical flow algorithms [WPB10, BM11, CP11]
and show an additional extensive comparison with
[SPC09] in our accompanying video. Recently,
perception-based image interpolation algorithms have
been presented [SLAM08, SLW+11] that concentrate
on matching visible edges in image pairs. However,
these algorithms neglect fine texture details available
in high-resolution images.

Recently, commercial tools for stereo footage post-
production have reached a mature stage of develop-
ment (e.g. Ocula [Hal08]). Our image correspon-
dence algorithm could be easily integrated into any
stereoscopic post-production pipeline, since it works
in an unsupervised fashion, only requires image pairs
as input and can be applied to various post-production
tasks, including image rectification and disparity esti-
mation.

3 Belief Propagation for image corre-
spondences

Belief Propagation estimates discrete labels for every
vertex in a given graph, i.e., for every pixel in a given
image. Although we do not achieve sub-pixel accu-
racy with Belief Propagation, its robustness makes it
an appealing option for discrete energy minimization
problems. In a nutshell, establishing pixel correspon-
dences between two images with Belief Propagation
works as follows: Matching costs for every possible
pixel match in a given search window are computed
for each pixel. Typically, theL1 norm of the difference
in pixel color serves as a basic example for this match-
ing cost. Neighboring pixels iteratively exchange their
(normalized) matching costs for potential correspon-
dences. This message passing process regularizes
the image correspondences and finally converges to
a point where consensus about final pixel correspon-
dences is reached. A combination of the individual
matching costs and the exchanged messages deter-
mines the final pixel correspondences. As a result, a
discrete correspondence vector w(p) = (u(p), v(p))
is assigned to every pixel location p = (x, y) that
encodes the correspondence to pixel location p′ =
(x+ u(p), y + v(p)) in the second image. For a thor-
ough introduction we would like to refer to [FP06].

Assuming that the search space is the whole image,
computational complexity and memory usage are as

high asO(L4), where L is the image width. By decou-
pling u and v (the horizontal and vertical component
of the correspondence vector), the complexity for mes-
sage passing can be reduced to O(L3), as proposed by
Liu et al. [LYT+08]. Still, the evaluation of the match-
ing costs runs in O(L4). We formulate the correspon-
dence estimation as an energy minimization problem,
our energy functional is based on the one proposed by
Liu et al. [LYT+08]

E(x) =
∑
p

‖d1(p)− d2(p+w(p))‖1

+
∑

(p,q)∈ε

min(α|u(p)− u(q)|, d)

+
∑

(p,q)∈ε

min(α|v(p)− v(q)|, d) (1)

Where w(p) = (u(p), v(p)) is the correspondence
vector at pixel location p = (x, y). In contrast
to the original SIFT flow implementation, di(p) =
[ci(p), si(p)] is a 131-dimensional descriptor vector,
containing both color information ci(p) ∈ R3 and the
SIFT descriptor si(p) ∈ R128. Each descriptor entry
has a value between 0 and 255. We set α = 160 and
d = imagewidth× 5. In addition, the pixel neighbor-
hood ε is not simply defined by the image lattice, as we
will show in Sect. 3.3. In contrast to SIFT flow, we do
not penalize large motion vectors, since we explicitly
try to reconstruct such scenarios.

As Liu et al. [LYT+08] demonstrated, this en-
ergy functional can be minimized with Efficient Be-
lief Propagation. Before we start with a detailed de-
scription of our pipeline, we would like to present our
extension of the energy functional to symmetric corre-
spondence maps.

3.1 A Symmetric Extension

Since we want to enforce symmetry between bidirec-
tional correspondence maps, we introduce a symme-
try term similar to the one proposed by Alvarez et al.
[ADPS07].

To our energy functional we add a symmetry term:

E(x) =
∑
p

‖d1(p)− d2(p+w12)‖1

+
∑

(p,q)∈ε

min(α|u(p)− u(q)|, d)
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+
∑

(p,q)∈ε

min(α|v(p)− v(q)|, d)

+
∑
p

min(α‖w12 +w21(p+w12)‖2, d)

Please note that now two correspondence maps co-
exist: w12 and w21. They are jointly estimated and
evaluated after each Belief Propagation iteration. It
proved to be sensible to assign the same weighting
and truncation values α and d to the symmetry term
that are also used for message propagation. When
comparing SIFT descriptors, the L1 distance is used
as proposed by Lowe [Low04]. Due to decoupling
of vertical and horizontal flow introduced by Liu et
al. [LYT+08], the smoothness term also uses the L1

norm. The construction of the symmetric term does
not impose any constraints on the distance function,
we empirically determined that the L2 norm works
well when evaluating symmetry.

Our correspondence estimation consists of six con-
secutive steps. The first three steps (Sect. 3.2, 3.3 and
3.4) are preprocessing steps for the actual Belief Prop-
agation optimization. After an initial low resolution
solution has been computed, possibly occluded parts
are inpainted, as described in Sect. 3.5. As a last step,
the correspondence map is upsampled and locally re-
fined as described in Sect. 3.6.

3.2 SIFT Descriptor downsampling

Liu et al. [LYT+08] designed their SIFT flow with
the goal in mind to match images that may only be
remotely similar, which comes close to the original in-
tention to find only a few dominant features [Low04].
Our goal, on the other side, is to match very similar im-
ages. We are faced with the challenge to discard pos-
sible matching ambiguities that occur when only color
information is used as a dissimilarity measure between
pixels. We use SIFT features to capture detail infor-
mation about the scene, hence we generate one feature
for every pixel of the full resolution images and search
at the bottom layer of the SIFT scale-space pyramid.
In order to only capture the most prominent details, a
single representative feature si(pg) is kept for every
n× n grid g of pixel locations.

The search for a representative descriptor is inspired
by the work of Frey et al. [FD07], who use their Affin-
ity Propagation technique to search for clusters in data
and simultaneously identify representatives for these
clusters. Since we have a pre-defined arrangement of
clusters, i.e. we want to roughly preserve the n × n

Figure 2: In our Belief Propagation scheme a single
pixel (red square) exchanges messages with its spatial
neighbors as well as pixels of similar color (orange cir-
cles). The underlying graph structure is obtained by
computing minimal spanning trees.

pixel block structure, we used our fixed clusters and
only adopt their suggestion that a cluster’s representa-
tive should be the one most similar to all other mem-
bers of the cluster.

Hence, the representative descriptor for each pixel
block is the one in the n × n pixel cell that has the
lowest cumulative L1 distance to all other descriptors.

A downsampled representation of the image is then
computed, where every grid cell in the downsampled
image is represented by a single descriptor. This de-
scriptor consists of the mean color value of the cell
and the representative SIFT descriptor.

3.3 Construction of Message Passing Graph

The fact that image regions of similar color often
share common properties, e.g. similar motion, is of-
ten exploited in regularization techniques. Typically,
this is achieved by applying an anisotropic regular-
ization, i.e., neighboring pixels with different colors
exert less influence on each other than pixels with
a similar color. This technique has two drawbacks:
First, regularization is decelerated. Second, the grid-
aligned regularization still manifests in jaggy borders
around correspondence discontinuity edges. Recently,
Smith et al. [SZJ09] proposed the construction of a
non-grid-like regularization scheme. While they ap-
plied this technique to stereo matching with a varia-
tional approach, we adapt their idea to our Belief Prop-
agation approach, see Fig. 2. We build an initial graph
where each vertex represents a pixel location of the

urn:nbn:de:0009-6-35543, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 8

(a) (b) (c)

Figure 3: Data term compression. For each pixel in
a source image (a), matching costs have to be evalu-
ated for Belief Propagation. One common approach
is to precompute matching costs in a predefined win-
dow (b). However, this leads to very high memory
load. Our approach uses a simple minima-preserving
compression of these matching cost windows (c). The
minima of each pixel block, each column, row and the
diagonal lines of the search window are stored. Dur-
ing decompression, the maximum of these values de-
termines the matching cost for a given location. While
regions with high matching costs are not recovered in
detail, local minima are preserved with high accuracy.

image. Edges connect pixels that have a certain maxi-
mal distance. Typically, we set this maximal distance
to 20 pixels. Each edge is assigned a weight that corre-
sponds to the L1 norm of the color and position of the
connected pixels. As in [SZJ09], a minimum spanning
tree is calculated using Kruskal’s algorithm [Kru56].
The edges of the spanning tree are added as neighbors
of the pixel and removed from the initial graph. Re-
peating this procedure on the initial graph once more
leads to an average number of 4 neighbors per pixel.
We further add the 4 direct image grid neighbors from
the image grid to the neighborhood ε of a pixel loca-
tion.

3.4 Data Term Compression

One bottleneck in Belief Propagation with SIFT fea-
tures is the computation of matching costs ‖s1(p) −
s2(p+w)‖1 between pixel locations s1(p) and s2(p+
w). Liu et al. [LYT+08] precompute the matching
costs before message passing. The alternative is to re-
evaluate matching costs on demand, which happens at
least once during each iteration when the data term
is evaluated. This results in 262(= 131 × 2) mem-
ory lookups per pixel comparison. Since storing data
terms is not an option with our high resolution data
and on-the-fly evaluation leads to run-times of several

(a) (b) (c)

Figure 4: Occlusion removal. Regions with asymmet-
ric correspondences (a), red, are processed in a two-
step algorithm. First, a k-means clustering (k = 2)
reveals the two predominant offset directions (b), blue
and green. These two sets of images are used as input
for Geodesic Matting (c). Depending on which label is
assigned to an occluded pixel, the local median fore-
ground or background motion is assigned.

days, we design a simple data term compression tech-
nique. We precompute all possible matching costs for
a single pixel s1(p) and its potential matching candi-
dates, see Fig. 3. Since it is quite likely that a pixel will
be finally matched to a candidate with a low dissimi-
larity (i.e., low matching cost), we employ a minima-
preserving compression technique that loses detail in
areas where high matching scores prevail. For each
m × m grid cell of the original data term, the mini-
mum is stored. In addition, for each row and column
of the matching window, the respective minimum is
stored. The same applies to the minima along the two
diagonal directions.

During decompression, the maximum of the these
minima is evaluated, resulting in 5 memory lookups
(the minimal grid cell value, the minimal row and col-
umn values and the minimal values of the two diago-
nals). When settingm = 4, at a data term window size
of typically 160 × 160 pixels, the memory usage per
term is reduced from 160× 160 = 25600 float values
to 40× 40 + 4× 160 = 2240 float values.

3.5 Occlusion Removal

It can be observed that the introduction of a symmetry
term leads to quasi-symmetric warps in non-occluded
areas. Hence, we use the symmetry ‖w12 +w21(p+
w12)‖2 of two opposing correspondence maps w12

and w21 as a measure of occlusion.
For each of these two simultaneously estimated

maps, asymmetric correspondence regions are identi-

urn:nbn:de:0009-6-35543, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 8

fied and treated independently, see Fig. 4. First, all
occluded regions are filled with correspondence infor-
mation values using diffusion. All pixels which would
lie outside the actual image boundaries according to
their correspondence vector are discarded as boundary
occlusions and their diffused values are kept.

Assuming that each of the remaining occlusion re-
gions is confined by a foreground and a background
region that move incoherently, we perform a k-means
clustering (k = 2) of the border region outside each
occluded area, all pixels in these border regions are
clustered according to their two correspondence vec-
tor components u(p) and v(p). The resulting pixel
sets serve as input data for a binary Geodesic Matting
[BS09] that assigns each pixel in the occluded area a
foreground or background label. Depending on the
label, each pixel is either assigned the foreground or
background flow. After the labeling is computed, the
median value of the n nearest neighbors of the fore-
ground or backround region is assigned. Typically, we
set n = 20 to get smooth results.

3.6 Upsampling and Refinement

The low resolution correspondence is upsampled as
follows. On the high-resolution map, the pixel that
was chosen as the representative SIFT descriptor is as-
signed the values that results from the low-resolution
Belief Propagation (scaled by factor n). For all re-
maining pixels, the value of the nearest representative
pixel in gradient space is assigned. These assigned
correspondence values serve as a prior for a local re-
finement. Like on the low resolution level, symmet-
ric Belief Propagation is used to obtain the final per-
pixel correspondence. The crucial difference is that
the search window is set to a very small size (typically
(n ∗ 2 + 1) × (n ∗ 2 + 1) pixel) and that it is located
around a correspondence prior p+w12 and not around
the pixel location p itself.

4 Applications

We identified two main showcase applications for our
algorithm. First, we use our dense correspondences
for image morphing. While traditional approaches
usually employ a user-assisted workflow [BN92], we
strive to compute motion vectors between images au-
tomatically. We use a simple forward warping scheme
to seamlessly render intermediate views between two
frames.

Figure 5: Quasi-Euclidean stereo image rectification
[FI08] using a randomly sampled subset of correspon-
dences. For visualization purposes, only 300 out of the
10, 000 sampled correspondences are rendered on top
of the rectified image.

A GPU rendering approach, inspired by Stich et
al. [SLAM08], is used. We create a dense vertex
mesh for each input image and forward warp it ac-
cording to the high-resolution flow field. We discard
fragments whose local divergence in the correspon-
dence map exceed a threshold of 4 pixels. If ambigu-
ities arise (i.e. two fragments of a mesh overlap), the
fragment with lower symmetry is discarded. The two
forward-warped meshes are alpha-blended, pixel frag-
ments with very low symmetry are again discarded in
the presence of pixels with symmetric correspondence.
Fig. 6 shows some image warping results.

Our second application is post-processing of stereo
footage. Although disparity computation is a 1-D
search problem in theory, actual stereoscopic footage
often violates the epipolar constraint. This is always
true for a convergent camera rig and may also hap-
pen when a parallel setup of cameras is slightly mis-
aligned. Temporal misalignment of stereo recordings
will also violate the epipolar constraint. Even if the
two video streams are synchronized up to a single
frame [MSMP08], the subframe offset between cam-
eras remains. In addition, temporal misalignment will
violate the epipolar constraint in the presence of mov-
ing objects. Dense pixel correspondences for each
stereo pair are computed using our method. Since we
expect that the epipolar constraint is violated, we al-
low for small displacements along the y-axis. For an
ad hoc rectification of an image pair, we use the quasi-
euclidean method proposed by Fusiello et al. [FI08].
Typically, this algorithm expects a set of sparse corre-
spondences as its input. Robust rectification is possi-
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ble using only a subset of our symmetric correspon-
dences. We use a set of 10, 000 randomly sampled
symmetric correspondences for rectification. Now,
per-pixel disparities can be deduced from the corre-
spondence maps and the rectification homographies.
Disparity-based effects such as artificial depth of field,
fog, baseline modification, and layer segmentation can
be applied to the footage (see Fig. 8) and combined
with traditional flow-based effects, such as slow mo-
tion rendering. We present a selection of results in our
accompanying video.

Numerous other application scenarios for our im-
age correspondence algorithm exist. One of the most
interesting is the integration into free-viewpoint-video
systems that may depend on disparity [ZKU+04] or
optical flow estimation [CW93, LLB+10, MLSM10].

5 Results and Discussion

For a qualitative assessment of our proposed approach,
we would like to refer to the accompanying video
which can be found on the project website.1 We es-
timated correspondences for the Middlebury optical
flow data set and rendered image morphs of the Back-
yard, Dumptruck, and Evergreen sequence. Among
these, the Backyard scene is the most challenging one,
since it features a small, quickly moving ball. Using
our approach, the ball is cut out properly as a result
of our regularization scheme. Without this it either
tends to drag its vicinity along its motion path, or a
too strong regularization assigns the background flow
to the whole area.

For all following scenarios, we deliberately chose
image pairs with both camera and object motion. The
Breakdancer scene taken from the dataset of Zitnick
et al. [ZKU+04] features noisy images and fast scene
motion. Still, image correspondences are successfully
established. Even the shadow of the breakdancer in
the background moves plausibly. The shortcomings
of our simple rendering approach manifest in motion
streak artifacts around the right foot of the break-
dancer. Please note that in their original work, Zitnick
et al. [ZKU+04] only performed stereo matching. Our
algorithm does not exploit the epipolar constraint and
copes with moving objects. The dancer scene looks
a lot less challenging at first glance. However, the
ground surface is quite demanding, since shadows and
reflections of the dancer and background are visible.

1http://graphics.tu-bs.de/projects/vvc

The Parcours scene can be interpreted as a failure case
of our approach. Although large parts of the scene
are matched correctly, the occluded regions around
the parcours runner are not handled correctly by the
Geodesic Matting. The background is too cluttered
to allow a consistent local color model that separates
background from foreground. The Fireball sequence
shows that the algorithm copes well with illumination
changes. However, the opening crack around the Fire-
ball impairs overall rendering quality.

To emphasize the high complexity of our test
scenes, we also estimated optical flows for the Par-
cours, Dancing, and the Fireball scene with three
state-of-the-art optical flow implementations [WPB10,
BM11, CP11]. Fig. 7 shows the flow fields and inter-
polated images side-by-side in comparison to our ap-
proach. Notice that the same rendering technique was
used to generate all the images. The fast GPU im-
plementation of Werlberger et al. [WPB10] focuses on
quick runtime and allows the computation of the im-
age correspondences within several seconds, however
the rendered results using this approach show severe
visual artifacts. When comparing to the TV-L1 mo-
tion estimation by Chambolle and Pock [CP11] and
the large displacement optical flow by Brox and Ma-
lik [BM11], it becomes apparent that our proposed
technique bears great potential. While the actual fore-
ground objects are covered well by both algorithms as
well as our implementation, challenging details in the
background, e.g., the trees (Parcour scene) or the plas-
tic foil (Fireball scene), are correctly matched only by
our approach. In an additional comparison with the ap-
proach by Steinbrcker et al. [SPC09], included in the
accompanying video, we made similar observations.

As a second application scenario we chose the post-
production of stereoscopic footage. The processed
Heidelberg sequence features repetitive patterns on the
house in the background and changing illumination
on the two tourists. After image rectification (Fig. 5)
and disparity estimation, we applied visual effects to
demonstrate the versatility of our approach. We show
a synthetic depth of field effect combined with slow
motion. First, we render in-between frames for the
slow-motion effect using image morphing. We addi-
tionally morph disparity maps and apply a variable
blur. The blur kernel size is determined per pixel by
disparity.

All results were obtained on an Intel Quadcore PC
with 2.66 GHz and 4 GB RAM. Depending on the
maximum displacement vector, computation took be-
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(a) (b) (c) (d)

Figure 6: Image Morphing results. a) and b) two input images, c) offset vector fields from first to second image,
coded in optical flow notation, d) rendered in-between image. Note that while our approach yields overall robust
results, details such as the reflection of the dancer or the shadow of the breakdancer are preserved. We would
like to refer to the accompanying video for further assessment.

tween 20 minutes (Heidelberg sequence) and 12 hours
(Parcours sequence) per image pair.

Limitations The most severe limitation is the long
run-time of our algorithm, which only allows pro-
cessing single image pairs or short video clips. Un-
til now, the implementation is completely CPU based.
This is also due to the fact of high memory consump-
tion. Since we compute two symmetric correspon-
dence maps in parallel, memory consumption is as
high as 4 GB for large displacements (e.g., the Par-
cours sequence which features displacements of up
to 400 pixels). In order to move the computation to
GPU, an even more compact data representation than
our currently employed compression scheme has to be
developed. Obtaining a suitable search window size
is another problem, since the maximum displacement
has to be known prior to the correspondence estima-
tion. If the window size is set too small, some corre-
spondences will not be established correctly. If it is set
too high, the overall run-time will be excessively high.
The last limitation of our approach is our simple ren-

dering scheme for image morphing. Especially at oc-
clusion borders, rendering artifacts can occur. A more
elaborate rendering mechanism such as presented by
Mahajan et al. [MHM+09] may be used in the future.

6 Conclusion

We presented an algorithm for robustly estimating
pixel correspondences in image pairs. We showed that
our approach can be used as a versatile tool for various
video post-production tasks. Rendered results of chal-
lenging scenes and comparison with the State of the
Art prove the robustness and accuracy of our approach.
Further improvement has to be made on computational
complexity and memory consumption, since the cur-
rent run-times are clearly too long for many applica-
tions.

7 Acknowledgements

We would like to thank the company dongleware for
providing the ”Heidelberg” stereo sequence [Ame11].

urn:nbn:de:0009-6-35543, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 8

This work has been funded by the European Re-
search Council ERC under contract No.256941 “Real-
ity CG” and by the German Science Foundation, DFG
MA 2555/1-3 and MA 2555/4-2.

References

[ADPS07] L. Alvarez, R. Deriche, T. Papadopoulo,
and J. Sánchez, Symmetrical dense op-
tical flow estimation with occlusions de-
tection, IJCV 75 (2007), no. 3, 371–385,
ISSN 1573-1405.

[Ame11] Meinolf Amekudzi, Dongleware web-
site, 2011, /www.dongleware.de.

[BM11] T. Brox and J. Malik, Large displace-
ment optical flow: descriptor matching
in variational motion estimation, IEEE
Transactions on Pattern Analysis and
Machine Intelligence 33 (2011), no. 3,
500–513, ISSN 0162-8828.

[BN92] Thaddeus Beier and Shawn Neely,
Feature-based image metamorphosis,
SIGGRAPH’92 Proceedings of the 19th
annual conference on computer graphics
and interactive techniques 26 (1992),
no. 2, 35–42, ISSN 0097-8930.

[BS09] Xue Bai and Guillermo Sapiro, Geodesic
Matting: A Framework for Fast Interac-
tive Image and Video Segmentation and
Matting, IJCV 82 (2009), no. 2, 113–
132, ISSN 0920-5691.

[BSL+07] Simon Baker, Daniel Scharstein, J. P.
Lewis, Stefan Roth, Michael J. Black,
and Richard Szeliski, A Database and
Evaluation Methodology for Optical
Flow, IEEE 11th International Confer-
ence on Computer Vision ICCV (Col-
orado Springs, USA), IEEE Computer
Society, 2007, pp. 1–8.

[CP11] Antonin Chambolle and Thomas Pock,
A First-Order Primal-Dual Algorithm
for Convex Problems with Applications
to Imaging, J. Math. Imaging Vis. 40
(2011), no. 1, 120–145, ISSN 0924-9907.

[CW93] Shenchang Eric Chen and Lance
Williams, View interpolation for image

synthesis, Proc. of ACM SIGGRAPH’93
(New York), ACM Press/ACM SIG-
GRAPH, 1993, pp. 279–288, ISBN

0-89791-601-8.

[FD07] Brendan J. Frey and Delbert Dueck,
Clustering by Passing Messages Be-
tween Data Points, Science 315 (2007),
no. 5814, 972–976, ISSN 1095-9203.

[FI08] A. Fusiello and L. Irsara, Quasi-
euclidean Uncalibrated Epipolar Rectifi-
cation, 19th International Conference on
Pattern Recognition ICPR 2008 (Tampa,
FL, USA), 2008, pp. 1–4, ISBN 978-1-
4244-4420-5.

[FP06] P. F. Felzenszwalb and
D. P.Huttenlocher, Efficient Belief
Propagation for Early Vision, IJCV,
vol. 70, 2006, pp. 41–54.

[GGC11] Scott Grauer-Gray and John Cavazos,
Optimizing and auto-tuning belief prop-
agation on the GPU, Proceedings of the
23rd international conference on Lan-
guages and compilers for parallel com-
puting (Berlin, Heidelberg), LCPC’10,
Springer-Verlag, 2011, pp. 121–135,
ISBN 978-3-642-19594-5.

[Hal08] Lucy Hallpike, The Role of Ocula in
Stereo Post Production, 2008, .

[Kru56] Joseph B. Kruskal, On the Shortest Span-
ning Subtree of a Graph and the Trav-
eling Salesman Problem, Proceedings of
the American Mathematical Society 7
(1956), no. 1, 48–50, ISSN 0002-9939.

[LLB+10] Christian Lipski, Christian Linz, Kai
Berger, Anita Sellent, and Marcus Mag-
nor, Virtual Video Camera: Image-Based
Viewpoint Navigation Through Space
and Time, Computer Graphics Forum 29
(2010), no. 8, 2555–2568, ISSN 1467-
8659.

[Low99] David G. Lowe, Object Recognition from
Local Scale-Invariant Features, Proceed-
ings of the International Conference
on Computer Vision (Colorado Springs,
USA), ICCV ’99, vol. 2, IEEE Computer

urn:nbn:de:0009-6-35543, ISSN 1860-2037

http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Alvarez&auinit=L.&title=&atitle=Symmetrical+dense+optical+flow+estimation+with+occlusions+detection&issn=1573-1405&date=2007&volume=7&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Alvarez&auinit=L.&title=&atitle=Symmetrical+dense+optical+flow+estimation+with+occlusions+detection&issn=1573-1405&date=2007&volume=7&number=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Alvarez&auinit=L.&title=&atitle=Symmetrical+dense+optical+flow+estimation+with+occlusions+detection&issn=1573-1405&date=2007&volume=7&number=3
http://www.dongleware.de/
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Brox&aufirst=T.&title=&atitle=Large+displacement+optical+flow+descriptor+matching+in+variational+motion+estimation&issn=0162-8828&date=2011&volume=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Brox&aufirst=T.&title=&atitle=Large+displacement+optical+flow+descriptor+matching+in+variational+motion+estimation&issn=0162-8828&date=2011&volume=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Brox&aufirst=T.&title=&atitle=Large+displacement+optical+flow+descriptor+matching+in+variational+motion+estimation&issn=0162-8828&date=2011&volume=3
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Beier&aufirst=Thaddeus&title=&atitle=Feature-based+image+metamorphosis&issn=0097-8930&date=1992&volume=2&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bai&aufirst=Xue&title=&atitle=Geodesic+Matting+A+Framework+for+Fast+Interactive+Image+and+Video+Segmentation+and+Matting&issn=0920-5691&date=2009&volume=8&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bai&aufirst=Xue&title=&atitle=Geodesic+Matting+A+Framework+for+Fast+Interactive+Image+and+Video+Segmentation+and+Matting&issn=0920-5691&date=2009&volume=8&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bai&aufirst=Xue&title=&atitle=Geodesic+Matting+A+Framework+for+Fast+Interactive+Image+and+Video+Segmentation+and+Matting&issn=0920-5691&date=2009&volume=8&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Bai&aufirst=Xue&title=&atitle=Geodesic+Matting+A+Framework+for+Fast+Interactive+Image+and+Video+Segmentation+and+Matting&issn=0920-5691&date=2009&volume=8&number=2
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Baker&aufirst=Siimon&title=IEEE+11th+International+Conference+on+Computer+Vision+ICCV&date=2007&issn=1573-1405
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Baker&aufirst=Siimon&title=IEEE+11th+International+Conference+on+Computer+Vision+ICCV&date=2007&issn=1573-1405
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Baker&aufirst=Siimon&title=IEEE+11th+International+Conference+on+Computer+Vision+ICCV&date=2007&issn=1573-1405
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Chambolle&aufirst=Antonin&title=&atitle=A+First-Order+Primal-Dual+Algorithm+for+Convex+Problems+with+Applications+to+Imaging&issn=0924-9907&date=2011&volume=4&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Chambolle&aufirst=Antonin&title=&atitle=A+First-Order+Primal-Dual+Algorithm+for+Convex+Problems+with+Applications+to+Imaging&issn=0924-9907&date=2011&volume=4&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Chambolle&aufirst=Antonin&title=&atitle=A+First-Order+Primal-Dual+Algorithm+for+Convex+Problems+with+Applications+to+Imaging&issn=0924-9907&date=2011&volume=4&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Chen&aufirst=Shenchang&title=Proc.+of+ACM+SIGGRAPH93&isbn=0-89791-601-8&date=1993
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Chen&aufirst=Shenchang&title=Proc.+of+ACM+SIGGRAPH93&isbn=0-89791-601-8&date=1993
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Frey&aufirst=Brendan&title=&atitle=Clustering+by+Passing+Messages+Between+Data+Points&issn=1095-9203&date=2007&volume=3&number=5814
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Frey&aufirst=Brendan&title=&atitle=Clustering+by+Passing+Messages+Between+Data+Points&issn=1095-9203&date=2007&volume=3&number=5814
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Fusiello&auinit=A.&title=19th+International+Conference+on+Pattern+Recognition+ICPR+2008&isbn=978-1-4244-4420-5&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Fusiello&auinit=A.&title=19th+International+Conference+on+Pattern+Recognition+ICPR+2008&isbn=978-1-4244-4420-5&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Fusiello&auinit=A.&title=19th+International+Conference+on+Pattern+Recognition+ICPR+2008&isbn=978-1-4244-4420-5&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Felzenszwalb&auinit=P.&title=IJCV&issn=1573-1405&date=2006
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Felzenszwalb&auinit=P.&title=IJCV&issn=1573-1405&date=2006
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Grauer-Gray&aufirst=Scott&title=Proceedings+of+the+23rd+international+conference+on+Languages+and+compilers+for+parallel+computing&isbn=978-3-642-19594-5&date=2011
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Grauer-Gray&aufirst=Scott&title=Proceedings+of+the+23rd+international+conference+on+Languages+and+compilers+for+parallel+computing&isbn=978-3-642-19594-5&date=2011
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Hallpike&aufirst=Lucy&title=&atitle=The+Role+of+Ocula+in+Stereo+Post+Production&date=2008
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Hallpike&aufirst=Lucy&title=&atitle=The+Role+of+Ocula+in+Stereo+Post+Production&date=2008
http://www.thefoundry.co.uk/
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kruskal&aufirst=Joseph&title=&atitle=On+the+Shortest+Spanning+Subtree+of+a+Graph+and+the+Traveling+Salesman+Problem&issn=0002-9939&date=1956&volume=7&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kruskal&aufirst=Joseph&title=&atitle=On+the+Shortest+Spanning+Subtree+of+a+Graph+and+the+Traveling+Salesman+Problem&issn=0002-9939&date=1956&volume=7&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Kruskal&aufirst=Joseph&title=&atitle=On+the+Shortest+Spanning+Subtree+of+a+Graph+and+the+Traveling+Salesman+Problem&issn=0002-9939&date=1956&volume=7&number=1
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Lipski&aufirst=Christian&title=&atitle=Virtual+Video+Camera:+Image-Based+Viewpoint+Navigation+Through+Space+and+Time&issn=1467-8659&date=2010&volume=2&number=8
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Lipski&aufirst=Christian&title=&atitle=Virtual+Video+Camera:+Image-Based+Viewpoint+Navigation+Through+Space+and+Time&issn=1467-8659&date=2010&volume=2&number=8
http://www.digibib.net/openurl?sid=hbz:dipp&genre=article&aulast=Lipski&aufirst=Christian&title=&atitle=Virtual+Video+Camera:+Image-Based+Viewpoint+Navigation+Through+Space+and+Time&issn=1467-8659&date=2010&volume=2&number=8
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lowe&aufirst=David&title=Proceedings+of+the+International+Conference+on+Computer+Vision&isbn=0-7695-0164-8&date=1999
http://www.digibib.net/openurl?sid=hbz:dipp&genre=proceeding&aulast=Lowe&aufirst=David&title=Proceedings+of+the+International+Conference+on+Computer+Vision&isbn=0-7695-0164-8&date=1999


Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 8

Society, 1999, pp. 1150–1157, ISBN 0-
7695-0164-8.

[Low04] David G. Lowe, Distinctive Image Fea-
tures from Scale-Invariant Keypoints, Int.
J. Comput. Vision 60 (2004), no. 2, 91–
110, ISSN 1573-1405.

[LTWS11] Ruxandra Lasowski, Art Tevs, Michael
Wand, and Hans-Peter Seidel, Wavelet
Belief Propagation for Large Scale In-
ference Problems, IEEE Conference on
Computer Vision and Pattern Recogni-
tion (CVPR 2011) (Colorado Springs,
USA), IEEE Computer Society, 2011,
pp. 1921–1928, ISBN 978-1-4577-0394-
2.

[LYT+08] Ce Liu, Jenny Yuen, Antonio Tor-
ralba, Josef Sivic, and William T. Free-
man, SIFT Flow: Dense Correspondence
across Different Scenes, ECCV ’08: Pro-
ceedings of the 10th European Confer-
ence on Computer Vision, 2008, pp. 28–
42, ISBN 978-3-540-88689-1.

[MHM+09] Dhruv Mahajan, Fu-Chung Huang, Wo-
jciech Matusik, Ravi Ramamoorthi, and
Peter Belhumeur, Moving Gradients: A
Path-Based Method for Plausible Image
Interpolation, ACM Trans. Graph. 28
(2009), no. 3, ISSN 0730-0301, Article
No. 42.

[MLSM10] Benjamin Meyer, Christian Lipski, Björn
Scholz, and Marcus Magnor, Real-time
Free-Viewpoint Navigation from Com-
pressed Multi-Video Recordings, 3DPVT
2010, 2010.

[MSMP08] Benjamin Meyer, Timo Stich, Marcus
Magnor, and Marc Pollefeys, Subframe
Temporal Alignment of Non-Stationary
Cameras, Proc. British Machine Vision
Conference BMVC ’08, 2008, ISBN 978-
1-901725-36-0.

[SLAM08] Timo Stich, Christian Linz, Georgia Al-
buquerque, and Marcus Magnor, View
and Time Interpolation in Image Space,
Computer Graphics Forum 27 (2008),
no. 7, 1781–1787, ISSN 1467-8659.

[SLW+11] Timo Stich, Christian Linz, Christian
Wallraven, Douglas Cunningham, and
Marcus Magnor, Perception-motivated
interpolation of image sequences, ACM
Trans. Appl. Percept. 8 (2011), no. 2, 1–
25, ISSN 1544-3558, Article no. 11.
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Figure 7: Comparison of image interpolation results using state-of-the-art optical flow algorithms. Results
are shown in columns, computed using a) the GPU implementation by Werlberger et al. [WPB10], b) TV-
L1 motion estimation by Chambolle and Pock [CP11], c) large displacement optical flow by Brox and Malik
[BM11], and d) our approach. From top to bottom, the columns of the figure show an interpolated image and
below the color-coded correspondence field. Errors in the estimated flow field typically show up as ghosting
artifacts. Only our approach is able to correctly estimate the motion of the background in the fire scene (row 1
and 2) and the large arm motion of the dancer (row 3 and 4). In the parcour scene (row 5 and 6), our approach
fails at the borders of the dancer, but correctly estimates correspondences of the trees in the background and
manages to find the huge displacement of the wall due to change of camera perspective.
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Figure 8: Results for the stereoscopic Heidelberg scene. a) Original image (left camera image), b) disparity,
c) synthetic depth of field, d) fog and e) baseline editing. Our approach can be used for various tasks in
stereoscopic post-production. To view the stereoscopic image in 3D please use cyan-red anaglyph glasses.
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